Characteristics of Heat Sources and Clouds over Eastern China and the Tibetan Plateau in Boreal Summer

Author:

Chen Jinghua1,Wu Xiaoqing1,Yin Yan2,Xiao Hui3

Affiliation:

1. Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, China, and Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa

2. Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

3. Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, China

Abstract

Abstract In this study, the summer clouds and precipitation over eastern China and the Tibetan Plateau (TP) are examined by analyzing the satellite observations and the apparent heat source Q1 and moisture sink Q2 computed from the NCEP–NCAR reanalysis. The vertically integrated [Q1] and [Q2] and precipitation have similar interannual variations in eastern China, revealing the important contribution from the condensation process. This relationship is weakened in east TP (ETP) because of the contribution of the surface sensible heat flux. In west TP (WTP), [Q1] is negatively correlated with precipitation because the surface sensible heat flux can be sharply weakened by the decrease of ground–air temperature difference due to rainfall. High clouds and deep convection are closely related with [Q1] and [Q2] over eastern China and ETP, while middle clouds and nimbostratus are responsible for the condensation over WTP. During the rainy summer, more convective rains and stronger upward motion appear in eastern China. Greater Q1 and Q2 and stronger upward motion present over ETP, while weaker Q1 and upward motion are observed over WTP in the rainy summer when compared to the dry summer. The cloud-water path over eastern China positively correlates with [Q1] and [Q2] over ETP. The deep convection over eastern China also positively correlates with the convection over ETP. These correlations suggest that moisture due to the evaporation of cloud water in anvil clouds detrained from the deep convection over ETP can be transported downstream and benefit the development of convection over eastern China.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3