Temporal and Spatial Surface Heat Source Variation in the Gurbantunggut Desert from 1950 to 2021

Author:

Aihaiti Ailiyaer12345,Wang Yu12345,Mamtimin Ali12345ORCID,Liu Junjian12345ORCID,Gao Jiacheng12345,Song Meiqi12345,Wen Cong12345ORCID,Ju Chenxiang12345ORCID,Yang Fan12345,Huo Wen12345ORCID

Affiliation:

1. Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China

2. National Observation and Research Station of Desert Meteorology, Taklimakan Desert of Xinjiang, Urumqi 830002, China

3. Taklimakan Desert Meteorology Field Experiment Station of China Meteorological Administration, Urumqi 830002, China

4. Xinjiang Key Laboratory of Desert Meteorology and Sandstorm, Urumqi 830002, China

5. Key Laboratory of Tree-Ring Physical and Chemical Research, China Meteorological Administration, Urumqi 830002, China

Abstract

Based on data from the Gurbantunggut Desert, the largest fixed/semi-fixed desert in China, and ERA5-Land reanalysis data, the long-term variations and spatial surface heat source (SHS) differences in the Gurbantunggut Desert are discussed herein. The results show the following: (1) The hourly SHS at the Kelameili station during the 2013–2021 period was a weak heat source at night; contrastingly, it was a strong heat source during the day. The duration of the hourly SHS increased gradually from January to July, but it decreased gradually from July to December. The daily SHS showed obvious seasonal variation, reaching the maximum in summer and the minimum in winter. The ERA5-Land reanalysis can reproduce all the variation characteristics of the SHS well. (2) The climatology (i.e., multi-year mean) of the monthly SHS intensity was lower than 50 W/m2 during the January–March and September–December periods in the Gurbantunggut Desert, indicating a weak heat source. On the other hand, the climatology recorded in April–August was higher than 50 W/m2, with a strong heat source. From the perspective of spatial distribution, the eastern and western regions of the Gurbantunggut Desert show strong heat sources, while the central region shows weak heat sources. The spatial distribution of the first and second modes of the empirical orthogonal function (EOF) decomposition reflected the consistent spatial variability and a north–south (or east–west) polarity variation of the monthly SHS in the Gurbantunggut Desert, respectively. (3) The yearly SHS showed negative anomalies during the 1950–1954, 1964–1982 and 2004–2015 periods, and positive anomalies during the 1955–1963, 1983–2003 and 2016–2021 periods in the Gurbantunggut Desert. Additionally, the time series of the SHS anomalies was positively correlated with the Interdecadal Pacific Oscillation (IPO) index. During the negative IPO phase, the yearly SHS showed a negative anomaly in the Gurbantunggut Desert, while the yearly SHS showed a positive anomaly during the positive IPO phase in most regions of the Gurbantunggut Desert.

Funder

Science and Technology Development Fund, Institute of Desert Meteorology, China Meteorological Administration, Urumqi

Sandstorm laboratory project

Central Scientific Research Institute of the Public Basic Scientific Research Business Professional

National Natural Science Foundation of China

Science and technology innovation development Foundation of Xinjiang Meteorological Bureau

Innovation Team Project of Xinjiang Meteorological Service

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3