Toward the Dynamical Convergence on the Jet Stream in Aquaplanet AGCMs

Author:

Lu Jian1,Chen Gang2,Leung L. Ruby1,Burrows D. Alex2,Yang Qing1,Sakaguchi Koichi1,Hagos Samson1

Affiliation:

1. Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

2. Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

Abstract

Abstract Systematic sensitivity of the jet position and intensity to horizontal model resolution is identified in several aquaplanet AGCMs, with the coarser resolution producing a more equatorward eddy-driven jet and a stronger upper-tropospheric jet intensity. As the resolution of the models increases to 50 km or finer, the jet position and intensity show signs of convergence within each model group. The mechanism for this convergence behavior is investigated using a hybrid Eulerian–Lagrangian finite-amplitude wave activity budget developed for the upper-tropospheric absolute vorticity. The results suggest that the poleward shift of the eddy-driven jet with higher resolution can be attributed to the smaller effective diffusivity of the model in the midlatitudes that allows more wave activity to survive the dissipation and to reach the subtropical critical latitude for wave breaking. The enhanced subtropical wave breaking and associated irreversible vorticity mixing act to maintain a more poleward peak of the vorticity gradient, and thus a more poleward jet. Being overdissipative, the coarse-resolution AGCMs misrepresent the nuanced nonlinear aspect of the midlatitude eddy–mean flow interaction, giving rise to the equatorward bias of the eddy-driven jet. In accordance with the asymptotic behavior of effective diffusivity of Batchelor turbulence in the large Peclet number limit, the upper-tropospheric effective diffusivity of the aquaplanet AGCMs displays signs of convergence in the midlatitude toward a value of approximately 107 m2 s−1 for the ∇2 diffusion. This provides a dynamical underpinning for the convergence of the jet stream observed in these AGCMs at high resolution.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3