Southern Hemisphere Jet Variability in the IPSL GCM at Varying Resolutions

Author:

Arakelian Ara1,Codron Francis1

Affiliation:

1. Laboratoire de Météorologie Dynamique, Université Pierre et Marie Curie, CNRS, Paris, France

Abstract

Abstract Fluctuations of the Southern Hemisphere eddy-driven jet are studied in a suite of experiments with the Laboratoire de Météorologie Dynamique, version 4 (LMDZ4) atmospheric GCM with varying horizontal resolution, in coupled mode and with imposed SSTs. The focus is on the relationship between changes in the mean state brought by increasing resolution, and the intraseasonal variability and response to increasing CO2 concentration. In summer, the mean jet latitude moves poleward when the resolution increases in latitude, converging toward the observed one. Most measures of the jet dynamics, such as skewness of the distribution or persistence time scale of jet movements, exhibit a simple dependence on the mean jet latitude and also converge to the observed values. In winter, the improvement of the mean-state biases with resolution is more limited. In both seasons, the relationship between the dominant mode of variability—the southern annular mode (SAM)—and the mean state remains the same as in observations, except in the most biased winter simulation. The jet fluctuations—latitude shifts or splitting—just occur around a different mean position. Both the model biases and the response to increasing CO2 project strongly onto the SAM structure. No systematic relation between the amplitude of the response and characteristics of the control simulation was found, possibly due to changing dynamics or impacts of the physical parameterizations with different resolutions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference26 articles.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3