Characteristics and Variations of Low-Level Jets and Environmental Factors Associated with Summer Precipitation Extremes over the Great Plains

Author:

Hodges Derek1,Pu Zhaoxia1

Affiliation:

1. Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Abstract

Abstract Low-level jets (LLJs) are associated with 10%–45% of the summer precipitation in the U.S. Great Plains region (GPR). This study uses the NCEP North American Regional Reanalysis data product (1979–2017) to characterize the association between LLJs and precipitation extremes (anomalously wet versus dry) during the summer months (June–August) over the GPR. It is found that the number, distribution, and direction of LLJs are not clearly associated with the precipitation anomalies. The characteristics and structural variations of the LLJs and their large-scale and mesoscale environment are then examined to identify the links between LLJs and precipitation extremes. Results show that dry and wet summers vary by synoptic anomaly patterns. During dry summers the anomalous ridging results in a warmer and drier environment, primarily through subsidence, which inhibits precipitation near LLJs. In contrast, during wet summers, a reduction in subsidence occurs, resulting in stronger lift and a cooler and moister environment, which leads to enhanced precipitation near LLJs. The LLJ speed, orientation, and spatial properties vary according to the synoptic anomaly patterns. LLJs do not drive precipitation extremes, but instead, they respond to them. Specifically, the LLJ exit region is characterized by stronger baroclinity and higher moisture content during the wet years. The higher moisture content allows for ascending air parcels to reach saturation more quickly, while the stronger baroclinity increases the warm advection associated with the LLJ. This, in turn, leads to faster rising motion and is therefore closely associated with the location and intensity of the LLJ associated precipitation.

Funder

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3