Affiliation:
1. ETH Zürich, Zürich, Switzerland
2. Massachusetts Institute of Technology, Cambridge, Massachusetts
Abstract
Abstract
Simulations with climate models show a land–ocean contrast in the response of P − E (precipitation minus evaporation or evapotranspiration) to global warming, with larger changes over ocean than over land. The changes over ocean broadly follow a simple thermodynamic scaling of the atmospheric moisture convergence: the so-called “wet-get-wetter, dry-get-drier” mechanism. Over land, however, the simple scaling fails to give any regions with decreases in P − E, and it overestimates increases in P − E compared to the simulations. Changes in circulation cause deviations from the simple scaling, but they are not sufficient to explain this systematic moist bias. It is shown here that horizontal gradients of changes in temperature and fractional changes in relative humidity, not accounted for in the simple scaling, are important over land and high-latitude oceans. An extended scaling that incorporates these gradients is shown to better capture the response of P − E over land, including a smaller increase in global-mean runoff and several regions with decreases in P − E. In the zonal mean over land, the gradient terms lead to a robust drying tendency at almost all latitudes. This drying tendency is shown to relate, in part, to the polar amplification of warming in the Northern Hemisphere, and to the amplified warming over continental interiors and on the eastern side of midlatitude continents.
Publisher
American Meteorological Society
Cited by
256 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献