Detection of global runoff changes: results from observations and CMIP5 experiments

Author:

Alkama R.,Marchand L.,Ribes A.ORCID,Decharme B.ORCID

Abstract

Abstract. This paper assesses the detectability of changes in global streamflow. First, a statistical detection method is applied to observed (no missing data which represent 42% of global discharge) and reconstructed (gaps are filled in order to cover a larger area and about 60% of global discharge) streamflow. Observations show no change over the 1958–1992 period. Further, an extension to 2004 over the same catchment areas using reconstructed data does not provide evidence of a significant change. Conversely, a significant change is found in reconstructed streamflow when a larger area is considered. These results suggest that changes in global streamflow are still unclear. Moreover, changes in streamflow as simulated by models from Coupled Model Intercomparison Project 5 (CMIP5) using the historic and future RCP 8.5 scenarios are investigated. Most CMIP5 models are found to simulate the climatological streamflow reasonably well, except for over South America and Africa. Change becomes significant between 2016 and 2040 for all but three models.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3