Affiliation:
1. Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts
Abstract
Abstract
The climatological annual cycle in surface air temperature, defined by its amplitude and phase lag with respect to solar insolation, is one of the most familiar aspects of the climate system. Here, the authors identify three first-order features of the spatial structure of amplitude and phase lag and explain them using simple physical models. Amplitude and phase lag 1) are broadly consistent with a land and ocean end-member mixing model but 2) exhibit overlap between land and ocean and, despite this overlap, 3) show a systematically greater lag over ocean than land for a given amplitude. Based on previous work diagnosing relative ocean or land influence as an important control on the extratropical annual cycle, the authors use a Lagrangian trajectory model to quantify this influence as the weighted amount of time that an ensemble of air parcels has spent over ocean or land. This quantity explains 84% of the space–time variance in the extratropical annual cycle, as well as features 1 and 2. All three features can be explained using a simple energy balance model with land and ocean surfaces and an advecting atmosphere. This model explains 94% of the space–time variance of the annual cycle in an illustrative midlatitude zonal band when incorporating the results of the trajectory model. The aforementioned features of annual variability in surface air temperature thus appear to be explained by the coupling of land and ocean through mean atmospheric circulation.
Publisher
American Meteorological Society
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献