How Well Do the CMIP5 Models Simulate the Antarctic Atmospheric Energy Budget?

Author:

Previdi Michael1,Smith Karen L.1,Polvani Lorenzo M.2

Affiliation:

1. Lamont–Doherty Earth Observatory of Columbia University, Palisades, New York

2. Lamont–Doherty Earth Observatory of Columbia University, Palisades, and Department of Applied Physics and Applied Mathematics, and Department of Earth and Environmental Sciences, Columbia University, New York, New York

Abstract

Abstract The authors evaluate 23 coupled atmosphere–ocean general circulation models from phase 5 of CMIP (CMIP5) in terms of their ability to simulate the observed climatological mean energy budget of the Antarctic atmosphere. While the models are shown to capture the gross features of the energy budget well [e.g., the observed two-way balance between the top-of-atmosphere (TOA) net radiation and horizontal convergence of atmospheric energy transport], the simulated TOA absorbed shortwave (SW) radiation is too large during austral summer. In the multimodel mean, this excessive absorption reaches approximately 10 W m−2, with even larger biases (up to 25–30 W m−2) in individual models. Previous studies have identified similar climate model biases in the TOA net SW radiation at Southern Hemisphere midlatitudes and have attributed these biases to errors in the simulated cloud cover. Over the Antarctic, though, model cloud errors are of secondary importance, and biases in the simulated TOA net SW flux are instead driven mainly by biases in the clear-sky SW reflection. The latter are likely related in part to the models’ underestimation of the observed annual minimum in Antarctic sea ice extent, thus underscoring the importance of sea ice in the Antarctic energy budget. Finally, substantial differences in the climatological surface energy fluxes between existing observational datasets preclude any meaningful assessment of model skill in simulating these fluxes.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3