An assessment of land energy balance over East Asia from multiple lines of evidence and the roles of the Tibet Plateau, aerosols, and clouds

Author:

Wang QiuyanORCID,Zhang HuaORCID,Yang Su,Chen Qi,Zhou Xixun,Xie Bing,Wang YuyingORCID,Shi Guangyu,Wild MartinORCID

Abstract

Abstract. With high emissions of aerosols and the known world's “Third Pole” of the Tibet Plateau (TP) in East Asia, knowledge on the energy budget over this region has been widely concerned. This study first attempts to estimate the present-day land energy balance over East Asia by combining surface and satellite observations as well as the atmospheric reanalysis and Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations. Compared to the global land budget, a substantially larger fraction of atmospheric shortwave radiation of 5.2 % is reflected, highly associated with the higher aerosol loadings and more clouds over East Asian land. While a slightly smaller fraction of atmospheric shortwave absorption of 0.6 % is unexpectedly estimated, possibly related to the lower water vapor content effects due to the thinner air over the TP to overcompensate for the aerosol and cloud effects over East Asian land. The weaker greenhouse effect and fewer low clouds due to the TP are very likely the causes of the smaller fraction of East Asian land surface downward longwave radiation. Hence, high aerosol loadings, clouds, and the TP over East Asia play vital roles in the shortwave budgets, while the TP is responsible for the longwave budgets during this regional energy budget assessment. The further obtained cloud radiative effects suggest that the presence of clouds results in a larger cooling effect on the climate system over East Asian land than that over the globe. This study provides a perspective to understand fully the roles of potential factors in influencing the different energy budget assessments over regions.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Chinese Academy of Meteorological Sciences

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference74 articles.

1. Boeke, R. C. and Taylor, P. C.: Evaluation of the Arctic surface radiation budget in CMIP5 models, J. Geophys. Res.-Atmos., 121, 8525–8548, https://doi.org/10.1002/2016JD025099, 2016.

2. CERES: Data Products, National Aeronautics and Space Administration (NASA) [data set], https://ceres.larc.nasa.gov/data/, last access: 20 March 2022.

3. Christensen, M. W., Behrangi, A., L'Ecuyer, T. S., Wood, N. B., Lebsock, M. D., and Stephens, G. L.: Arctic observation and reanalysis integrated system: A new data product for validation and climate study, B. Am. Meteorol. Soc., 97, 907–916, https://doi.org/10.1175/BAMS-D-14-00273.1, 2016.

4. CMA: Surface observational radiation data, China Meteorological Administration National Meteorological Information Center [data set], http://data.cma.cn/enl, last access: 10 February 2022.

5. CMIP6: Climate models, The World Climate Research Programme [data set], https://pcmdi.llnl.gov/CMIP6/, last access: 14 April 2022.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3