An Alternative Index for the Contribution of Precipitation on Very Wet Days to the Total Precipitation

Author:

Leander R.1,Buishand T. A.1,Tank A. M. G. Klein1

Affiliation:

1. Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands

Abstract

Abstract Daily precipitation series from more than 1800 stations across Europe are analyzed for the fraction of the total precipitation due to very wet days: that is, days with precipitation amounts exceeding the 95th percentile. This fraction is calculated on a seasonal (3-monthly) basis for the period 1961–2010. A new index S95pTOT is introduced as an alternative to the frequently used index R95pTOT. Contrary to R95pTOT, which uses a fixed climatological 95th percentile, the new index assumes a separate 95th percentile for each year. Based on a Weibull distribution fit to the wet-day precipitation amounts, an analytical expression for S95pTOT is derived. It is shown that R95pTOT is strongly influenced by changes in the mean wet-day precipitation, whereas S95pTOT is more representative of changes in the distributional shape. The results for S95pTOT do not support the conclusion for a disproportional increase of extreme precipitation over northern Europe as was concluded from the trend in R95pTOT in earlier studies. Also, the contrast between trends in northern and southern Europe in winter is less pronounced for S95pTOT than for R95pTOT.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference30 articles.

1. Global observed changes in daily climate extremes of temperature and precipitation;Alexander;J. Geophys. Res.,2006

2. Regional flood quantiles estimation for a Weibull model;Boes;Water Resour. Res.,1989

3. Updated analysis of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset;Donat;J. Geophys. Res.,2013

4. Trends in floods and low flows in the United States: Impact of spatial correlation;Douglas;J. Hydrol.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3