Untangling the environmental drivers of gross primary productivity in African rangelands

Author:

Lomax Guy A.ORCID,Powell Thomas W. R.ORCID,Lenton Timothy M.ORCID,Economou TheoORCID,Cunliffe Andrew M.ORCID

Abstract

AbstractPrecipitation variability is forecast to increase under climate change but its impacts on vegetation productivity are complex. Here, we use generalised additive models and remote sensing-derived datasets to quantify the effect of precipitation amount, distribution, and intensity on the gross primary productivity of dry rangelands across sub-Saharan Africa from 2000 to 2019 and differentiate these effects from other variables. We find that total precipitation is the primary driver of productivity, but that more variable rainfall has a small negative effect across vegetation types and rainfall regimes. Temperature and soil nitrogen also have strong effects, especially in drier rangelands. Shrublands and grasslands are more sensitive to environmental variability than savannas. Our findings support a model in which the main constraints on productivity are maintenance of soil moisture and minimisation of plant water stress. This highlights the risks of climate warming and increasing variability for productivity in water-limited grass and shrublands but suggests savannas may have greater resilience in Africa.

Funder

RCUK | Engineering and Physical Sciences Research Council

University of Exeter

EC | Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3