Dynamics and Predictability of Hemispheric-Scale Multidecadal Climate Variability in an Observationally Constrained Mechanistic Model

Author:

Kravtsov Sergey1

Affiliation:

1. Department of Mathematical Sciences, Atmospheric Science Group, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, and Shirshov Institute of Oceanology, Russian Academy of Science, Moscow, and Institute of Applied Physics, Russian Academy of Science, Nizhniy Novgorod, Russia

Abstract

AbstractThis paper addresses the dynamics of internal hemispheric-scale multidecadal climate variability by postulating an energy-balance (EBM) model comprising two deep-ocean oscillators in the Atlantic and Pacific basins, coupled through their surface mixed layers via atmospheric teleconnections. This system is linear and driven by the atmospheric noise. Two sets of the EBM model parameters are developed by fitting the EBM-based mixed-layer temperature covariance structure to best mimic basin-average North Atlantic/Pacific sea surface temperature (SST) covariability in either observations or control simulations of comprehensive climate models within the CMIP5 project. The differences between the dynamics underlying the observed and CMIP5-simulated multidecadal climate variability and predictability are encapsulated in the algebraic structure of the two EBM model versions so obtained: EBMCMIP5 and EBMOBS. The multidecadal variability in EBMCMIP5 is overall weaker and amounts to a smaller fraction of the total SST variability than in EBMOBS, pointing to a lower potential decadal predictability of virtual CMIP5 climates relative to that of the actual climate. The EBMCMIP5 decadal hemispheric teleconnections (and, by inference, those in CMIP5 models) are largely controlled by the variability of the Pacific, in which the ocean, due to its large thermal and dynamical memory, acts as a passive integrator of atmospheric noise. By contrast, EBMOBS features a stronger two-way coupling between the Atlantic and Pacific multidecadal oscillators, thereby suggesting the existence of a hemispheric-scale and, perhaps, global multidecadal mode associated with internal ocean dynamics. The inferred differences between the observed and CMIP5 simulated climate variability stem from a stronger communication between the deep ocean and surface processes implicit in the observational data.

Funder

Russian Science Foundation

Ministry of Education and Science of the Russian Federation

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3