Forced signal and predictability in a prototype climate model: Implications for fingerprinting based detection in the presence of multidecadal natural variability

Author:

Kravtsov S.123ORCID,Gavrilov A.2ORCID,Buyanova M.2ORCID,Loskutov E.2ORCID,Feigin A.2

Affiliation:

1. University of Wisconsin-Milwaukee, School of Freshwater Sciences, Atmospheric Sciences Group, Great Lakes Research Facility, 600 E Greenfield Ave., Milwaukee, Wisconsin 53204, USA

2. Institute of Applied Physics, Russian Academy of Sciences, 46 Ul’yanov St., Nizhny Novgorod 603950, Russia

3. Shirshov Institute of Oceanology, Russian Academy of Sciences, 36 Nakhimovskiy Ave., Moscow 117218, Russia

Abstract

Advanced numerical models used for climate prediction are known to exhibit biases in their simulated climate response to variable concentrations of the atmospheric greenhouse gases and aerosols that force a non-uniform, in space and time, secular global warming. We argue here that these biases can be particularly pronounced due to misrepresentation, in these models, of the multidecadal internal climate variability characterized by large-scale, hemispheric-to-global patterns. This point is illustrated through the development and analysis of a prototype climate model comprised of two damped linear oscillators, which mimic interannual and multidecadal internal climate dynamics and are set into motion via a combination of stochastic driving, representing weather noise, and deterministic external forcing inducing a secular climate change. The model time series are paired with pre-specified patterns in the physical space and form, conceptually, a spatially extended time series of the zonal-mean near-surface temperature, which is further contaminated by a spatiotemporal noise simulating the rest of climate variability. The choices of patterns and model parameters were informed by observations and climate-model simulations of the 20th century near-surface air temperature. Our main finding is that the intensity and spatial patterns of the internal multidecadal variability associated with the slow-oscillator model component greatly affect (i) the ability of modern pattern-recognition/fingerprinting methods to isolate the forced response of the climate system in the 20th century ensemble simulations and (ii) climate-system predictability, especially decadal predictability, as well as the estimates of this predictability using climate models in which the internal multidecadal variability is underestimated or otherwise misrepresented.

Funder

Russian Science Foundation

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3