Estimating predictability of a dynamical system from multiple samples of its evolution

Author:

Mukhin Dmitry1ORCID,Kravtsov Sergey123ORCID,Seleznev Aleksei1ORCID,Loskutov Evgeny1ORCID,Buyanova Maria1ORCID,Feigin Alexander1ORCID

Affiliation:

1. Institute of Applied Physics of RAS 1 , 46 Ulyanov Str., Nizhny Novgorod 603950, Russia

2. Department of Mathematical Sciences, Atmospheric Sciences Group, University of Wisconsin 2 , P.O. Box 413, Milwaukee, Wisconsin 53217, USA

3. Shirshov Institute of Oceanology of RAS 3 , 36 Nahimovskiy Pr., Moscow 117997, Russia

Abstract

Natural and social systems exhibit complex behavior reflecting their rich dynamics, whose governing laws are not fully known. This study develops a unified data-driven approach to estimate predictability of such systems when several independent realizations of the system’s evolution are available. If the underlying dynamics are quasi-linear, the signal associated with the variable external factors, or forcings, can be estimated as the ensemble mean; this estimation can be optimized by filtering out the part of the variability with a low ensemble-mean-signal-to-residual-noise ratio. The dynamics of the residual internal variability is then encapsulated in an optimal, in a Bayesian sense, linear stochastic model able to predict the observed behavior. This model’s self-forecast covariance matrices define a basis of patterns (directions) associated with the maximum forecast skill. Projecting the observed evolution onto these patterns produces the corresponding component time series. These ideas are illustrated by applying the proposed analysis technique to (1) ensemble data of regional sea-surface temperature evolution in the tropical Pacific generated by a state-of-the-art climate model and (2) consumer-spending records across multiple regions of the Russian Federation. These examples map out a range of possible solutions—from a solution characterized by a low-dimensional forced signal and a rich spectrum of predictable internal modes (1)—to the one in which the forced signal is extremely complex, but the number of predictable internal modes is limited (2). In each case, the proposed decompositions offer clues into the underlying dynamical processes, underscoring the usefulness of the proposed framework.

Funder

Ministry of Education and Science of the Russian Federation

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3