Revealing recurrent regimes of mid-latitude atmospheric variability using novel machine learning method

Author:

Mukhin Dmitry1ORCID,Hannachi Abdel2ORCID,Braun Tobias3ORCID,Marwan Norbert3ORCID

Affiliation:

1. Institute of Applied Physics of the Russian Academy of Science, 603950 Nizhny Novgorod, Russia

2. Department of Meteorology, Stockholm University, SE-106 91 Stockholm, Sweden

3. Potsdam Institute for Climate Impact Research, 14412 Potsdam, Germany

Abstract

The low-frequency variability of the extratropical atmosphere involves hemispheric-scale recurring, often persistent, states known as teleconnection patterns or regimes, which can have a profound impact on predictability on intra-seasonal and longer timescales. However, reliable data-driven identification and dynamical representation of such states are still challenging problems in modeling the dynamics of the atmosphere. We present a new method, which allows us both to detect recurring regimes of atmospheric variability and to obtain dynamical variables serving as an embedding for these regimes. The method combines two approaches from nonlinear data analysis: partitioning a network of recurrent states with studying its properties by the recurrence quantification analysis and the kernel principal component analysis. We apply the method to study teleconnection patterns in a quasi-geostrophical model of atmospheric circulation over the extratropical hemisphere as well as to reanalysis data of geopotential height anomalies in the mid-latitudes of the Northern Hemisphere atmosphere in the winter seasons from 1981 to the present. It is shown that the detected regimes as well as the obtained set of dynamical variables explain large-scale weather patterns, which are associated, in particular, with severe winters over Eurasia and North America. The method presented opens prospects for improving empirical modeling and long-term forecasting of large-scale atmospheric circulation regimes.

Funder

Russian Science Foundation

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3