The Southern Annular Mode Seen through Weather Regimes

Author:

Pohl Benjamin1,Fauchereau Nicolas2

Affiliation:

1. Centre de Recherches de Climatologie, UMR6282 Biogéosciences, CNRS/Université de Bourgogne, Dijon, France

2. Council for Scientific and Industrial Research, Stellenbosh, and Department of Oceanography, University of Cape Town, Cape Town, South Africa

Abstract

This article investigates the prominent features of the Southern Hemisphere (south of 20°S) atmospheric circulation when extracted using EOF analysis and a k-means clustering algorithm. The focus is on the southern annular mode (SAM), the nature of its recent trend, and the zonal symmetry of associated spatial patterns. The study uses the NCEP–Department of Energy Atmospheric Model Intercomparison Project II Reanalysis (NCEP-2) (period 1979–2009) to obtain robust patterns over the recent years and the Twentieth Century Reanalysis Project (period 1871–2008) to document decadal changes. Also presented is a comparison of these signals against a station-based reconstruction of the SAM index and a gridded interpolated dataset [Hadley Centre Sea Level Pressure dataset version 2 (HadSLP2)]. Over their common period, both reanalyses are in fair agreement, both in terms of spatial patterns and temporal variability. In particular, both datasets show weather regimes that can be interpreted as the opposite phases of the SAM. At the decadal time scale, the study shows that the trend toward the positive SAM phase (as inferred from the usual EOF-based index) is related more to an increase in the frequency of clusters corresponding to the positive phase, with little changes in the frequency of the negative SAM events. Similarly, the long-term tropospheric warming trend already discussed in the literature is shown to be related more to a decrease in the number of abnormally cold days, with little changes in the number of abnormally warm days. The cluster analysis therefore allows for complement descriptions based on simple indexes or EOF decompositions, highlighting the nonlinear nature of the decadal changes in the Southern Hemisphere atmospheric circulation and temperature.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3