Development and Evaluation of an Objective Criterion for the Real-Time Prediction of Indian Summer Monsoon Onset in a Coupled Model Framework

Author:

Joseph Susmitha1,Sahai A. K.1,Abhilash S.1,Chattopadhyay R.1,Borah N.1,Mapes B. E.2,Rajeevan M.1,Kumar A.3

Affiliation:

1. Indian Institute of Tropical Meteorology, Pune, India

2. University of Miami, Miami, Florida

3. National Centers for Environmental Prediction, College Park, Maryland

Abstract

Abstract This study reports an objective criterion for the real-time extended-range prediction of monsoon onset over Kerala (MOK), using circulation as well as rainfall information from the 16 May initial conditions of the Grand Ensemble Prediction System based on the coupled model CFSv2. Three indices are defined, one from rainfall measured over Kerala and the others based on the strength and depth of the low-level westerly jet over the Arabian Sea. While formulating the criterion, the persistence of both rainfall and low-level wind after the MOK date has been considered to avoid the occurrence of “bogus onsets” that are unrelated to the large-scale monsoon system. It is found that the predicted MOK date matches well with the MOK date declared by the India Meteorological Department, the authorized principal weather forecasting agency under the government of India, for the period 2001–14. The proposed criterion successfully avoids predicting bogus onsets, which is a major challenge in the prediction of MOK. Furthermore, the evolution of various model-predicted large-scale and local meteorological parameters corresponding to the predicted MOK date is in good agreement with that of the observation, suggesting the robustness of the devised criterion and the suitability of CFSv2 model for MOK prediction. However, it should be noted that the criterion proposed in the present study can be used only in the dynamical prediction framework, as it necessitates input data on the future evolution of rainfall and low-level wind.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3