Precipitation Associated with Convergence Lines

Author:

Weller Evan1,Shelton Kay2,Reeder Michael J.3,Jakob Christian3

Affiliation:

1. School of Earth, Atmosphere and Environment, and Centre of Excellence for Climate System Science, Monash University, Clayton, Victoria, Australia

2. JBA Consulting, Skipton, United Kingdom

3. School of Earth, Atmosphere and Environment, Centre of Excellence for Climate System Science, Monash University, Clayton, Victoria, Australia

Abstract

Precipitation is often organized along coherent lines of low-level convergence, which at longer time and space scales form well-known convergence zones over the world’s oceans. Here, an automated, objective method is used to identify instantaneous low-level convergence lines in reanalysis data and calculate their frequency for the period 1979–2013. Identified convergence lines are combined with precipitation observations to assess the extent to which precipitation around the globe is associated with convergence lines in the lower troposphere. It is shown that a large percentage of precipitation (between 65% and 90%) over the tropical oceans is associated with such convergence lines, with large regional variations of up to 30% throughout the year, especially in the eastern Pacific and Atlantic Oceans. Over land, the annual-mean proportion of precipitation associated with convergence lines ranges between 30% and 60%, and the lowest proportions (less than 15%) associated with convergence lines occur on the eastern flank of the subtropical highs. Overall, much greater precipitation is associated with long coherent lines (greater than 300 km in length) than with shorter fragmented lines (less than 300 km), and the majority of precipitation associated with shorter lines occurs over land. The proportion of precipitation not associated with any convergence line primarily occurs where both precipitation and frequency of convergence lines are low. The high temporal and spatial resolution of the climatology constructed also enables an examination of the diurnal cycle in the relationship between convergence lines and precipitation. Here an example is provided over the tropical Maritime Continent region.

Funder

Australian Research Council Centre of Excellence for Climate System Science

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3