What Is the Contribution of Convergence Zones to Global Precipitation? Assessing Observations and Climate Models Biases

Author:

Perez Gabriel M. P.12ORCID,Vidale Pier Luigi13ORCID,Dacre Helen1ORCID,Martin Thomas C. M.2

Affiliation:

1. Department of Meteorology University of Reading Reading UK

2. MeteoIA Sao Paulo Brazil

3. National Centre for Atmospheric Science Reading UK

Abstract

AbstractConvergence zones (CZs) are known drivers of precipitation regimes from regional to planetary scales. However, there is a scarcity of accounts of the contribution of CZs to the global precipitation. In this study, we build upon a recently developed Lagrangian diagnostic to attribute precipitation to CZ events in observations and simulations submitted to the Coupled Model Intercomparison Project 6 (CMIP6). Observed CZs are identified using ERA5 reanalysis wind and attributed precipitation from observational products based on satellite estimates and rain gauges. We estimate that approximately 54% (51%–59%, depending on the precipitation product) of global precipitation falls over CZs; in some regions, such as the Intertropical Convergence Zone (ITCZ) and subtropical monsoon regions, this proportion is greater than 60%. All CMIP6 simulations analyzed here attribute about 10% more precipitation to CZ events than what the observations suggest. To investigate this overestimation, we decompose the precipitation error in terms of frequency and intensity of CZ precipitation and find that all models present a substantial positive bias in the frequency of CZ precipitation, suggesting that climate models trigger precipitation too easily in regions of airmass confluence; such positive frequency biases in CZ precipitation help explaining well‐known biases in climate models, such as the double‐ITCZ in the Pacific. We also find that models with better mass conservation present an apportionment of CZ precipitation closest to the observational estimates, demonstrating the relevance of mass conservation in advection schemes.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3