Understanding and Improving the Scale Dependence of Trigger Functions for Convective Parameterization Using Cloud-Resolving Model Data

Author:

Song Fengfei1,Zhang Guang J.1

Affiliation:

1. Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Abstract

As the resolution of global climate model increases, whether trigger functions in current convective parameterization schemes still work remains unknown. In this study, the scale dependence of undilute and dilute dCAPE, Bechtold, and heated condensation framework (HCF) triggers is evaluated using the cloud-resolving model (CRM) data. It is found that all these trigger functions are scale dependent, especially for dCAPE-type triggers, with skill scores dropping from ~0.6 at the lower resolutions (128, 64, and 32 km) to only ~0.1 at 4 km. The average convection frequency decreases from 14.1% at 128 km to 2.3% at 4 km in the CRM data, but it increases rapidly in the dCAPE-type triggers and is almost unchanged in the Bechtold and HCF triggers across resolutions, all leading to large overpredictions at higher resolutions. In the dCAPE-type triggers, the increased frequency is due to the increased rate of dCAPE greater than the threshold (65 J kg−1 h−1) at higher resolutions. The box-and-whisker plots show that the main body of dCAPE in the correct prediction and overprediction can be separated from each other in most resolutions. Moreover, the underprediction is found to be corresponding to the decaying phase of convection. Hence, two modifications are proposed to improve the scale dependence of the undilute dCAPE trigger: 1) increasing the dCAPE threshold and 2) considering convection history, which checks whether there is convection prior to the current time. With these modifications, the skill at 16 km, 8 km, and 4 km can be increased from 0.50, 0.27, and 0.15 to 0.70, 0.61, and 0.53, respectively.

Funder

National Science Foundation

Biological and Environmental Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3