Impacts of Cumulus Parameterizations on Extreme Precipitation Simulation in Semi-Arid Region: A Case Study in Northwest China

Author:

Zhaoye Pinghan,Yang KaiORCID,Wang ChenghaiORCID

Abstract

In the context of climate change, extreme precipitation in semi-arid region happens frequently. How well models simulate extreme precipitation in semi-arid region remains unclear. Based on a WRF v4.3 simulation of a rainstorm event that occurred in Qingyang, China on 21 July 2019, applying Kain–Fritsch (KF), Grell–Devenyi (GD) and Bullock–Wang (BW) schemes, the impacts of different cumulus parameterizations on extreme precipitation simulations in semi-arid region were analyzed, and the possible causes of precipitation biases were explored. The results showed that the WRF with the three schemes essentially reproduced the location and structure of precipitation, but the intensity of precipitation in the central region was underestimated. Based on the structure-amplitude-location (SAL) method, the KF scheme exhibited better performance in precipitation simulation than the other two schemes, while there were significant intensity and location deviations of rain band occurrence between simulations using the GD, BW schemes and observations. Convection simulation using the GD and BW schemes was less effective than that using the KF scheme, compared to the observations. As a result, the GD and BW schemes simulated a larger geopotential height at 500 hPa over Qingyang and weaker upper-level low troughs than simulations using the KF scheme. This led to simulation of less water vapor transport into the front of the trough, resulting in a deficit in simulated precipitation. The study results highlight the impacts of convection on large-scale atmospheric circulation linked to extreme precipitation in semi-arid region.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference31 articles.

1. Drought under global warming: a review

2. Climate Extremes: Observations, Modeling, and Impacts

3. Climatic Warming and Humidification in the Arid Region of Northwest China: Multi-Scale Characteristics and Impacts on Ecological Vegetation

4. A study of the stability of the precipitation cycle over northwest China in the past 50 years;Wang;Adv. Earth Sci.,2006

5. Changes of Water Vapor Budget in Arid Area of Northwest China and Its Relationship with Precipitation;Xu;J. Arid Meteorol.,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3