Tropical–Extratropical Interactions Associated with East Asian Cold Air Outbreaks. Part II: Intraseasonal Variation

Author:

Abdillah Muhammad Rais1ORCID,Kanno Yuki1,Iwasaki Toshiki1

Affiliation:

1. Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan

Abstract

Intraseasonal variations of East Asian cold air outbreaks (CAOs) in relation to the tropical atmosphere during 34 winters (DJF) are investigated. This study is a continuation of Part I, which discussed the interannual variability of East Asian CAOs. Two types of quantitative East Asian CAOs, western and eastern CAOs, are examined. Their variations are identified by the zonal integration of equatorward flux of cold air mass (CAM) below 280 K at 45°N over 90°–135°E and 135°E–180°. A day-lagged regression analysis reveals that peaks of intraseasonal western and eastern CAO events are preconditioned by large-scale tropical convection anomalies resembling particular phases of the Madden–Julian oscillation (MJO). Western CAO events tend to occur when the convective phase of the MJO crosses over the Maritime Continent. In contrast, eastern CAO events are triggered by the MJO over the western Pacific. Observations of MJO-related atmospheric anomalies indicate the important roles of poleward Rossby wave trains in affecting extratropical East Asian CAOs. The barotropic Rossby waves develop negative geopotential height anomalies in midlatitude East Asia, which then induce a low-level equatorward cold airflow. Several experiments in an atmospheric model using prescribed MJO-like heating anomalies demonstrate that the Maritime Continent MJO and the western Pacific MJO clearly affect the equatorward CAM flux over the western and eastern CAO regions, respectively. Compared with the western CAO, the eastern CAO shows a more robust response to the MJO because of stronger wave activity during the western Pacific MJO.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Program on Climate Change Adaptation Technology

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3