Tropical–Extratropical Interactions Associated with East Asian Cold Air Outbreaks. Part I: Interannual Variability

Author:

Abdillah Muhammad Rais1,Kanno Yuki1,Iwasaki Toshiki1

Affiliation:

1. Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan

Abstract

Interannual variability of winter-mean East Asian cold air outbreaks (CAOs) and its relationship with the tropical climate system during 56 boreal winters (DJF) are investigated. The magnitude of CAO is quantified as winter-mean equatorward cold airmass (CAM) flux below 280-K potential temperature across the 45°N latitude. EOF analysis shows that the interannual variation of East Asian CAOs is attributed mainly to the contributions from western and eastern CAOs. In particular, the western and eastern CAOs tend to be remotely forced by La Niña and El Niño events, respectively. The western and eastern CAOs have distinct climate variability. The western CAO, which is enhanced under the climatic anomalies of high pressure over northern Eurasia and low pressure over the western North Pacific, causes negative CAM anomalies over northern Eurasia and positive ones over midlatitude East Asia. In the tropical region, the western CAO negatively correlates with the eastern Pacific and Indian Ocean SST, both of which enhance precipitation over the Maritime Continent. On the other hand, the eastern CAO is enhanced by the strong Aleutian low and results in positive CAM anomalies in the western North Pacific and substantial negative anomalies in western North America. The eastern CAO positively correlates with the tropical SST anomalies and accordingly precipitation anomalies over the central Pacific. ENSO influences western and eastern CAOs through upper and poleward Rossby wave trains excited by convective anomalies over the Maritime Continent and central Pacific, respectively.

Funder

Program on Climate Change Adaptation Technology

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science, and Technology

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3