Distinguishing Interannual Variations of the Northern and Southern Modes of the East Asian Winter Monsoon

Author:

Chen Zhang1,Wu Renguang2,Chen Wen3

Affiliation:

1. Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

2. Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong, China

3. Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Abstract

Abstract The East Asian winter monsoon (EAWM)-related climate anomalies have shown large year-to-year variations in both the intensity and the meridional extent. The present study distinguishes the interannual variations of the low-latitude and mid- to high-latitude components of the EAWM to gain a better understanding of the characteristics and factors for the EAWM variability. Through composite analysis based on two indices representing the northern and southern components (modes) of the EAWM variability, the present study clearly reveals features unique to the northern and southern mode. The northern mode is associated with changes in the mid- to high-latitude circulation systems, including the Siberian high, the Aleutian low, the East Asian trough, and the East Asian westerly jet stream, whereas the southern mode is closely related to circulation changes over the global tropics, the North Atlantic, and North America. A strong northern mode is accompanied by positive, negative, and positive surface temperature anomalies in the Indochina Peninsula, midlatitude Asia, and northeast Russia, respectively. A strong southern mode features lower temperature over tropics and higher temperature over mid- to high-latitude Asia. While the southern mode is closely related to El Niño–Southern Oscillation (ENSO), the northern mode does not show an obvious relation to the tropical sea surface temperature (SST) change or to the North Atlantic Oscillation (NAO)/Arctic Oscillation (AO) on the interannual time scale. Distinct snow cover and sea ice changes appear as responses to wind and surface temperature changes associated with the two modes and their effects on the EAWM variability need to be investigated in the future.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3