Temperature-Driven Rise in Extreme Sub-Hourly Rainfall

Author:

Bürger G.1,Pfister A.2,Bronstert A.1

Affiliation:

1. Institute of Earth and Environmental Science, University of Potsdam, Potsdam, Germany

2. Emschergenossenschaft/Lippeverband, Technisches Hochwassermanagement, Essen, Germany

Abstract

AbstractEstimates of present and future extreme sub-hourly rainfall are derived from a daily spatial followed by a sub-daily temporal downscaling, the latter of which incorporates a novel, and crucial, temperature sensitivity. Specifically, daily global climate fields are spatially downscaled to local temperature T and precipitation P, which are then disaggregated to a temporal resolution of 10 min using a multiplicative random cascade model. The scheme is calibrated and validated with a group of 21 station records of 10-min resolution in Germany. The cascade model is used in the classical (denoted as MC) and in the new T-sensitive (MC+) version, which respects local Clausius–Clapeyron (CC) effects such as CC scaling. Extreme P is positively biased in both MC versions. Observed T sensitivity is absent in MC but well reproduced by MC+. Long-term positive trends in extreme sub-hourly P are generally more pronounced and more significant in MC+ than in MC. In units of 10-min rainfall, observed centennial trends in annual exceedance counts (EC) of P > 5 mm are +29% and in 3-yr return levels (RL) +27%. For the RCP4.5-simulated future, higher extremes are projected in both versions MC and MC+: per century, EC increases by 30% for MC and by 83% for MC+; the RL rises by 14% for MC and by 33% for MC+. Because the projected daily P trends are negligible, the sub-daily signal is mainly driven by local temperature.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3