Diurnal Cycle of Summer Precipitation over Subtropical East Asia in CAM5

Author:

Yuan Weihua1,Yu Rucong2,Zhang Minghua3,Lin Wuyin4,Li Jian5,Fu Yunfei6

Affiliation:

1. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

2. LaSW, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China

3. Institute for Terrestrial and Planetary Atmospheres, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York

4. Brookhaven National Laboratory, Brookhaven, New York

5. Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China

6. Laboratory of Satellite Remote Sensing and Climate Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China

Abstract

Abstract The simulations of summertime diurnal cycle of precipitation and low-level winds by the Community Atmosphere Model, version 5, are evaluated over subtropical East Asia. The evaluation reveals the physical cause of the observed diurnal rainfall variation in East Asia and points to the source of model strengths and weaknesses. Two model versions with horizontal resolutions of 2.8° and 0.5° are used. The models can reproduce the diurnal phase of large-scale winds over East Asia, with an enhanced low-level southwesterly in early morning. Correspondingly, models successfully simulated the diurnal variation of stratiform rainfall with a maximum in early morning. However, the simulated convective rainfall occurs at local noontime, earlier than observations and with larger amplitude (normalized by the daily mean). As a result, models simulated a weaker diurnal cycle in total rainfall over the western plain of China due to an out-of-phase cancellation between convective and stratiform rainfalls and a noontime maximum of total rainfall over the eastern plain of China. Over the East China Sea, models simulated the early-morning maximum of convective precipitation and, together with the correct phase of the stratiform rainfall, they captured the diurnal cycle of total precipitation. The superposition of the stratiform and convective rainfalls also explains the observed diurnal cycle in total rainfall in East Asia. Relative to the coarse-resolution model, the high-resolution model simulated slight improvement in diurnal rainfall amplitudes, due to the larger amplitude of stratiform rainfall. The two models, however, suffer from the same major biases in rainfall diurnal cycles due to the convection parameterization.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3