Progressive Midlatitude Afforestation: Impacts on Clouds, Global Energy Transport, and Precipitation

Author:

Laguë Marysa M.1,Swann Abigail L. S.2

Affiliation:

1. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

2. Department of Atmospheric Sciences, and Department of Biology, University of Washington, Seattle, Washington

Abstract

Abstract Vegetation influences the atmosphere in complex and nonlinear ways, such that large-scale changes in vegetation cover can drive changes in climate on both local and global scales. Large-scale land surface changes have been shown to introduce excess energy to one hemisphere, causing a shift in atmospheric circulation on a global scale. However, past work has not quantified how the climate response scales with the area of vegetation. Here, the response of climate to linearly increasing the area of forest cover in the northern midlatitudes is systematically evaluated. This study shows that the magnitude of afforestation of the northern midlatitudes determines the local climate response in a nonlinear fashion, and the authors identify a threshold in vegetation-induced cloud feedbacks—a concept not previously addressed by large-scale vegetation manipulation experiments. Small increases in tree cover drive compensating cloud feedbacks, while latent heat fluxes reach a threshold after sufficiently large increases in tree cover, causing the troposphere to warm and dry, subsequently reducing cloud cover. Increased absorption of solar radiation at the surface is driven by both surface albedo changes and cloud feedbacks. This study shows how atmospheric cross-equatorial energy transport changes as the area of afforestation is incrementally increased. The results highlight the importance of considering both local and remote climate effects of large-scale vegetation change and explore the scaling relationship between changes in vegetation cover and resulting climate impacts.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3