Reduced terrestrial evaporation increases atmospheric water vapor by generating cloud feedbacks

Author:

Laguë M MORCID,Quetin G RORCID,Boos W RORCID

Abstract

Abstract Reduced terrestrial evaporation directly warms the surface by reducing latent cooling, but also indirectly modifies surface climate by altering atmospheric processes. We use a global climate model to explore two end cases of terrestrial evaporation, comparing the climate of SwampLand, a world where land is always fully saturated with water, to that of DesertLand, where land is always completely lacking in soil moisture. When we suppress evaporation to create a desert-like planet, we find that temperatures increase and precipitation decreases in the global mean. We find an increase in atmospheric water vapor over both land and ocean in the DesertLand simulation. Suppressing evaporative cooling over the continents reduces continental cloud cover, allowing more energy input to the surface and increasing surface moist static energy over land. The residence time of atmospheric water vapor increases by about 50 percent. Atmospheric feedbacks such as changes in air temperatures and cloud cover contribute larger changes to the terrestrial surface energy budget than the direct effect of suppressed evaporation alone. Without the cloud feedback, the land surface still warms with suppressed land evaporation, but total atmospheric water vapor decreases, and the anomalous atmospheric circulations over the continents are much shallower than in simulations with cloud changes; that is, the cloud feedback changes the sign of the water vapor response. This highlights the importance of accounting for atmospheric feedbacks when exploring land surface change impacts on the climate system.

Funder

James S. McDonnell Foundation

National Center for Atmospheric Research

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3