The Positive North Atlantic Oscillation with Downstream Blocking and Middle East Snowstorms: Impacts of the North Atlantic Jet

Author:

Yao Yao1,Luo Dehai2,Dai Aiguo3,Feldstein Steven B.4

Affiliation:

1. Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

2. Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, and Qingdao Collaborative Innovation Center of Marine Science and Technology, Physical Oceanography Laboratory, Ocean University of China, Qingdao, China

3. Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York, and National Center for Atmospheric Research, Boulder, Colorado

4. Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Abstract

Abstract A recent study revealed that cold winter outbreaks over the Middle East and southeastern Europe are caused mainly by the northeast–southwest (NE–SW) tilting of European blocking (EB) associated with the positive-phase North Atlantic Oscillation (NAO+). Here, the North Atlantic conditions are examined that determine the EB tilting direction, defined as being perpendicular to the dipole anomaly orientation. Using daily reanalysis data, the NAO+ events are classified into strong (SJN) and weak (WJN) North Atlantic jet types. A composite analysis shows that the EB is generally stronger and located more westward and southward during SJN events than during WJN events. During SJN events, the NAO+ and EB dipoles exhibit NE–SW tilting, which leads to strong cold advection and large negative temperature anomalies over the Middle East and southeastern Europe. In contrast, northwest–southeast (NW–SE) tilting without strong negative temperature anomalies over the Middle East is seen during WJN events. A nonlinear multiscale interaction model is modified to investigate the physical mechanism through which the North Atlantic jet (NAJ) affects EB with the NAO+ event. It is shown that, when the NAJ is stronger, an amplified EB event forms because of enhanced NAO+ energy dispersion. For a strong (weak) NAJ, the EB tends to occur in a relatively low-latitude (high latitude) region because of the suppressive (favorable) role of intensified (reduced) zonal wind in high latitudes. It exhibits NE–SW (NW–SE) tilting because the blocking region corresponds to negative-over-positive (opposite) zonal wind anomalies. The results suggest that the NAJ can modulate the tilting direction of EB, leading to different effects over the Middle East.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3