Suppression of Cold Weather Events over High-Latitude Continents in Warm Climates

Author:

Hu Zeyuan1ORCID,Cronin Timothy W.2,Tziperman Eli3

Affiliation:

1. Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts

2. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

3. Department of Earth and Planetary Sciences, and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts

Abstract

Recent studies, using Lagrangian single-column atmospheric models, have proposed that in warmer climates more low clouds would form as maritime air masses advect into Northern Hemisphere high-latitude continental interiors during winter (DJF). This increase in low cloud amount and optical thickness could reduce surface radiative cooling and suppress Arctic air formation events, partly explaining both the warm winter high-latitude continental interior climate and frost-intolerant species found there during the Eocene and the positive lapse-rate feedback in future Arctic climate change scenarios. Here the authors examine the robustness of this low-cloud mechanism in a three-dimensional atmospheric model that includes large-scale dynamics. Different warming scenarios are simulated under prescribed CO2 and sea surface temperature, and the sensitivity of winter temperatures and clouds over high-latitude continental interior to mid- and high-latitude sea surface temperatures is examined. Model results show that winter 2-m temperatures on extreme cold days increase about 50% faster than the winter mean temperatures and the prescribed SST. Low cloud fraction and surface longwave cloud radiative forcing also increase in both the winter mean state and on extreme cold days, consistent with previous Lagrangian air-mass studies, but with cloud fraction increasing for different reasons than proposed by previous work. At high latitudes, the cloud longwave warming effect dominates the shortwave cooling effect, and the net cloud radiative forcing at the surface tends to warm high-latitude land but cool midlatitude land. This could contribute to the reduced meridional temperature gradient in warmer climates and help explain the greater warming of winter cold extremes relative to winter mean temperatures.

Funder

National Science Foundation

National Natural Science Foundation of China

Harvard Climate Change solutions fund

Harvard Global Institute

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3