Controls on the Activation and Strength of a High-Latitude Convective Cloud Feedback

Author:

Abbot Dorian S.1,Tziperman Eli2

Affiliation:

1. School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts

2. School of Engineering and Applied Sciences, and Department of Earth and Planetary Science, Harvard University, Cambridge, Massachusetts

Abstract

Abstract Previous work has shown that a convective cloud feedback can greatly increase high-latitude surface temperature upon the removal of sea ice and can keep sea ice from forming throughout polar night. This feedback activates at increased greenhouse gas concentrations. It may help to explain the warm “equable climates” of the late Cretaceous and early Paleogene eras (∼100 to ∼35 million years ago) and may be relevant for future climate under global warming. Here, the factors that determine the critical threshold CO2 concentration at which this feedback is active and the magnitude of the warming caused by the feedback are analyzed using both a highly idealized model and NCAR’s single-column atmospheric model (SCAM) run under Arctic-like conditions. The critical CO2 is particularly important because it helps to establish the relevance of the feedback for past and future climates. Both models agree that increased heat flux into the high latitudes at low altitudes generally decreases the critical CO2. Increases in oceanic heat transport and in solar radiation absorbed during the summer should cause a sharp decrease in the critical CO2, but the effect of increases in atmospheric heat transport depends on its vertical distribution. It is furthermore found (i) that if the onset of convection produces more clouds and moisture, the critical CO2 should decrease, and the maximum temperature increase caused by the convective cloud feedback should increase and (ii) that reducing the depth of convection reduces the critical CO2 but has little effect on the maximum temperature increase caused by the convective cloud feedback. These results should help with interpretation of the strength and onset of the convective cloud feedback as found, for example, in Intergovernmental Panel on Climate Change (IPCC) coupled ocean–atmosphere models with different cloud and convection schemes.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3