The emergence of a new wintertime Arctic energy balance regime

Author:

Miyawaki OORCID,Shaw T A,Jansen M F

Abstract

Abstract The modern Arctic climate during wintertime is characterized by sea-ice cover, a strong surface temperature inversion, and the absence of convection. Correspondingly, the energy balance in the Arctic atmosphere today is dominated by atmospheric radiative cooling and advective heating, so-called radiative advective equilibrium. Climate change in the Arctic involves sea-ice melt, vanishing of the surface inversion, and emergence of convective precipitation. Here we show climate change in the Arctic involves the emergence of a new energy balance regime characterized by radiative cooling, convective heating, and advective heating, so-called radiative convective advective equilibrium. A time-dependent decomposition of the atmospheric energy balance shows the regime transition is associated with enhanced radiative cooling followed by decreased advective heating. The radiative cooling response consists of a robust clear-sky greenhouse effect and a transient cloud contribution that varies across models. Mechanism-denial experiments in an aquaplanet with and without interactive sea ice highlight the important role of sea-ice melt in both the radiative cooling and advective heating responses. The results show that climate change in the Arctic involves temporally evolving mechanisms, suggesting that an emergent constraint based on historical data or trends may not constrain the long-term response.

Funder

National Science Foundation

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3