Reconciling the Spatial Distribution of the Surface Temperature Trends in the Southeastern United States

Author:

Misra V.1,Michael J.-P.1,Boyles R.2,Chassignet E. P.1,Griffin M.3,O’Brien J. J.4

Affiliation:

1. Department of Earth, Ocean and Atmospheric Science, and Center for Ocean–Atmospheric Prediction Studies, The Florida State University, Tallahassee, Florida

2. Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

3. Center for Ocean–Atmospheric Prediction Studies, and Florida Climate Center, The Florida State University, Tallahassee, Florida

4. Department of Earth, Ocean and Atmospheric Science, Center for Ocean–Atmospheric Prediction Studies, and Florida Climate Center, The Florida State University, Tallahassee, Florida

Abstract

Abstract This study attempts to explain the considerable spatial heterogeneity in the observed linear trends of monthly mean maximum and minimum temperatures (Tmax and Tmin) from station observations in the southeastern (SE) United States (specifically Florida, Alabama, Georgia, South Carolina, and North Carolina). In a majority of these station sites, the warming trends in Tmin are stronger in urban areas relative to rural areas. The linear trends of Tmin in urban areas of the SE United States are approximately 7°F century−1 compared to about 5.5°F century−1 in rural areas. The trends in Tmax show weaker warming (or stronger cooling) trends with irrigation, while trends in Tmin show stronger warming trends. This functionality of the temperature trends with land features also shows seasonality, with the boreal summer season showing the most consistent relationship in the trends of both Tmax and Tmin. This study reveals that linear trends in Tmax in the boreal summer season show a cooling trend of about 0.5°F century−1 with irrigation, while the same observing stations on an average display warming trends in Tmin of about 3.5°F century−1. The seasonality and the physical consistency of these relationships with existing theories may suggest that urbanization and irrigation have a nonnegligible influence on the spatial heterogeneity of the surface temperature trends over the SE United States. The study also delineates the caveats and limitations of the conclusions reached herein due to the potential influence of perceived nonclimatic discontinuities (which incidentally could also have a seasonal cycle) that have not been taken into account.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3