Surface Temperature Variations in East Africa and Possible Causes

Author:

Christy John R.1,Norris William B.1,McNider Richard T.1

Affiliation:

1. Earth System Science Center, University of Alabama in Huntsville, Huntsville, Alabama

Abstract

Abstract Surface temperatures have been observed in East Africa for more than 100 yr, but heretofore have not been subject to a rigorous climate analysis. To pursue this goal monthly averages of maximum (TMax), minimum (TMin), and mean (TMean) temperatures were obtained for Kenya and Tanzania from several sources. After the data were organized into time series for specific sites (60 in Kenya and 58 in Tanzania), the series were adjusted for break points and merged into individual gridcell squares of 1.25°, 2.5°, and 5.0°. Results for the most data-rich 5° cell, which includes Nairobi, Mount Kilimanjaro, and Mount Kenya, indicate that since 1905, and even recently, the trend of TMax is not significantly different from zero. However, TMin results suggest an accelerating temperature rise. Uncertainty estimates indicate that the trend of the difference time series (TMax − TMin) is significantly less than zero for 1946–2004, the period with the highest density of observations. This trend difference continues in the most recent period (1979–2004), in contrast with findings in recent periods for global datasets, which generally have sparse coverage of East Africa. The differences between TMax and TMin trends, especially recently, may reflect a response to complex changes in the boundary layer dynamics; TMax represents the significantly greater daytime vertical connection to the deep atmosphere, whereas TMin often represents only a shallow layer whose temperature is more dependent on the turbulent state than on the temperature aloft. Because the turbulent state in the stable boundary layer is highly dependent on local land use and perhaps locally produced aerosols, the significant human development of the surface may be responsible for the rising TMin while having little impact on TMax in East Africa. This indicates that time series of TMax and TMin should become separate variables in the study of long-term changes.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3