Changes in Extratropical Cyclone Precipitation and Associated Processes during the Twenty-First Century over Eastern North America and the Western Atlantic Using a Cyclone-Relative Approach

Author:

Zhang Zhenhai1,Colle Brian A.1

Affiliation:

1. School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

Abstract

This study investigates the future change in precipitation associated with extratropical cyclones over eastern North America and the western Atlantic during the cool season (November–March) through the twenty-first century. A cyclone-relative approach is applied to 10 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) in order to isolate precipitation changes for different cyclone intensities and storm life cycle, as well as determine the relevant physical processes associated with these changes. The historical analysis suggests that models with better performance in predicting extratropical cyclones tend to have smaller precipitation errors, and the ensemble mean has a smaller mean absolute error than the individual models. By the late-twenty-first century, the precipitation amount associated with cyclones increases by 5%–25% over the U.S. East Coast, with about 90% of the increase from the relatively strong (<990 hPa) and moderate (990–1005 hPa) cyclones. Meanwhile, the precipitation rate increases by 15%–25% over the U.S. East Coast for the strong cyclone centers, which is larger than the moderate and weak cyclones. The relatively strong cyclones just inland of the U.S. East Coast have the largest increase (~30%) in precipitation rate, since these centers over land have the largest increase in low-level temperature (and moisture), a decrease (5%–13%) in the static stability, and an increase (~5%) in upward motion during the late-twenty-first century. This east coast region also has an increase in cyclone intensity in the future even though there is a decrease in low-level baroclinicity, which suggests that the latent heat release from heavier precipitation contributes to this storm deepening.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3