Interdecadal Variations of the East Asian Winter Monsoon in CMIP5 Preindustrial Simulations

Author:

Miao Jiapeng1,Wang Tao2,Wang Huijun3

Affiliation:

1. Nansen-Zhu International Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

2. Nansen-Zhu International Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, and Joint Laboratory for Climate and Environmental Change, Chengdu University of Information Technology, Chengdu, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

3. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, and Key Laboratory of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing, and Climate Change Research Center, Chinese Academy of Sciences, Beijing, China

Abstract

AbstractIn this study, focusing on the interdecadal time scale, we investigate the internal variability of the East Asian winter monsoon (EAWM) using output from 19 coupled models’ long-term preindustrial control (piControl) simulations within phase 5 of the Coupled Model Intercomparison Program (CMIP5). In total, we identify 53 cases of significant interdecadal weakening of the EAWM from these 19 piControl simulations. In most weakening cases, both the Siberian high and the East Asian trough are significantly weakened. The East Asian jet stream in the upper troposphere shifts poleward. Southerly wind anomalies are evident over East Asia in the lower troposphere. At the same time, both the Arctic Oscillation (AO) and the North Pacific Oscillation are in their positive phases. Associated anomalous anticyclonic circulation can be found over the North Pacific. Additionally, the North Pacific shows negative Pacific decadal oscillation (PDO)-like sea surface temperature (SST) anomalies. In contrast, we also analyzed 49 cases of significant strengthening of the EAWM, and the atmospheric and oceanic anomalies show opposite signals with the weakening cases. This suggests that internal variabilities of the climate system can also cause interdecadal variations of the EAWM. In addition, the phase shifting of the AO is likely the main reason for the EAWM’s interdecadal variations in the unforced long-term simulations. Further numerical experiments using the Community Atmosphere Model, version 4 (CAM4), deny the causal relationship between the interdecadal variations of EAWM and PDO-like SST anomalies. This study also implies that the internal variabilities of the climate system could contribute to the observed interdecadal weakening of the EAWM around the mid-1980s.

Funder

National Natural Science Foundation of China

the CAS–PKU Joint Research Program

the Scientific Research Foundation of Joint Laboratory of Climate and Environment Change from Chengdu University of Information Technology

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3