Impact of Soil Moisture–Atmosphere Interactions on Surface Temperature Distribution

Author:

Berg Alexis1,Lintner Benjamin R.2,Findell Kirsten L.3,Malyshev Sergey4,Loikith Paul C.5,Gentine Pierre6

Affiliation:

1. Rutgers, The State University of New Jersey, New Brunswick, and Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

2. Rutgers, The State University of New Jersey, New Brunswick, New Jersey

3. Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

4. Princeton University, Princeton, New Jersey

5. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

6. Columbia University, New York, New York

Abstract

Abstract Understanding how different physical processes can shape the probability distribution function (PDF) of surface temperature, in particular the tails of the distribution, is essential for the attribution and projection of future extreme temperature events. In this study, the contribution of soil moisture–atmosphere interactions to surface temperature PDFs is investigated. Soil moisture represents a key variable in the coupling of the land and atmosphere, since it controls the partitioning of available energy between sensible and latent heat flux at the surface. Consequently, soil moisture variability driven by the atmosphere may feed back onto the near-surface climate—in particular, temperature. In this study, two simulations of the current-generation Geophysical Fluid Dynamics Laboratory (GFDL) Earth System Model, with and without interactive soil moisture, are analyzed in order to assess how soil moisture dynamics impact the simulated climate. Comparison of these simulations shows that soil moisture dynamics enhance both temperature mean and variance over regional “hotspots” of land–atmosphere coupling. Moreover, higher-order distribution moments, such as skewness and kurtosis, are also significantly impacted, suggesting an asymmetric impact on the positive and negative extremes of the temperature PDF. Such changes are interpreted in the context of altered distributions of the surface turbulent and radiative fluxes. That the moments of the temperature distribution may respond differentially to soil moisture dynamics underscores the importance of analyzing moments beyond the mean and variance to characterize fully the interplay of soil moisture and near-surface temperature. In addition, it is shown that soil moisture dynamics impacts daily temperature variability at different time scales over different regions in the model.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3