Climatology of Wind, Kinetic Energy, and Temperature Spectra Using a High-Resolution Climate Model for Mid-Europe

Author:

Zentek Rolf1,Heinemann Günther1,Sachs Ekkehard2

Affiliation:

1. Department of Environmental Meteorology, University of Trier, Trier, Germany

2. Department of Mathematics, University of Trier, Trier, Germany

Abstract

Abstract Spectra of wind, kinetic energy, and temperature are investigated for a dataset of 10 years of regional climate simulations for mid-Europe. The nonhydrostatic Consortium for Small-Scale Modeling (COSMO) model in Climate Mode [COSMO-CLM (CCLM)] climate model is used in a hindcast mode for 1991–2000. The three-step nesting chain starts with a CCLM run with 18-km resolution covering all of Europe nested in ERA-40 reanalyses and then a run with a resolution of 4.4 km is performed for mid-Europe. Finally, the 1.3-km run focuses on the region of mid-Germany and Luxembourg. In the present study, only results for the 4.4- and 1.3-km runs are shown. Different methods based on the Fourier and cosine transformations for the computation of the spectra are evaluated. The kinetic energy spectra show the expected slope in the mesoscale (up to the effective resolution), while the spectrum of the vertical wind shows a zero-slope behavior. The spectra of the horizontal wind components and temperature compare well to the observations. The effective model resolution was found to be about 7–10 (5–7) times the horizontal grid spacing for the one-dimensional (two-dimensional) spectral methods. A comparison between the different model resolutions shows a benefit of the 1.3-km simulations for the boundary layer for horizontal scales up to 25 km. The multiyear time-scale simulations allow for a climatological study of the seasonal cycle. The kinetic energy spectrum is found to have the largest values in summer.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3