The Horizontal Spectrum of Vertical Velocities near the Tropopause from Global to Gravity Wave Scales

Author:

Schumann Ulrich1

Affiliation:

1. Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany

Abstract

Abstract Vertical motions are fundamental for atmospheric dynamics. Compared to horizontal motions, the horizontal spectrum of vertical velocity w is less well known. Here, w spectra are related to spectra of horizontal motions in the free atmosphere near the tropopause from global to gravity wave scales. At large scales, w is related to vertically averaged horizontal divergent motions by continuity. At small scales, the velocity energy spectra reach anisotropy as in stably stratified turbulence. Combining these limits approximates the w spectrum from global to small scales. The w spectrum is flat at large scales when the divergent spectrum shows a −2 slope, reaches a maximum at mesoscales after transition to −5/3 slopes, and then approaches a fraction of horizontal kinetic energy. The ratio of vertical kinetic energy to potential energy increases quadratically with wavenumber at large scales. It exceeds unity at small scales in stratified turbulence. Global and regional simulations and two recent aircraft measurement field campaigns support these relationships within 30% deviations. Energy exchange between horizontal and vertical motions may contribute to slope changes in the spectra. The model allows for checking measurement validity. Isotropy at large and small scales varies between the datasets. The fraction of divergent energy is 40%–70% in the measurements, with higher values in the stratosphere. Spectra above the tropopause are often steeper over mountains than over oceans, partly with two −5/3 subranges. A total of 80% of w variance near the tropopause occurs at scales between about 0.5 and 80 km.

Funder

Bundesministerium für Bildung und Forschung

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3