Observed El Niño SSTA Development and the Effects of Easterly and Westerly Wind Events in 2014/15

Author:

Chiodi Andrew M.1,Harrison D. E.1

Affiliation:

1. Joint Institute for the Study of the Ocean and Atmosphere, University of Washington, and NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington

Abstract

Abstract The unexpected halt of warm sea surface temperature anomaly (SSTA) growth in 2014 and development of a major El Niño in 2015 has drawn attention to our ability to understand and predict El Niño development. Wind stress–forced ocean model studies have satisfactorily reproduced observed equatorial Pacific SSTAs during periods when data return from the TAO/TRITON buoy network was high. Unfortunately, TAO/TRITON data return in 2014 was poor. To study 2014 SSTA development, the observed wind gaps must be filled. The hypothesis that subseasonal wind events provided the dominant driver of observed waveguide SSTA development in 2014 and 2015 is used along with the available buoy winds to construct an oceanic waveguide-wide surface stress field of westerly wind events (WWEs) and easterly wind surges (EWSs). It is found that the observed Niño-3.4 SSTA development in 2014 and 2015 can thereby be reproduced satisfactorily. Previous 2014 studies used other wind fields and reached differing conclusions about the importance of WWEs and EWSs. Experiment results herein help explain these inconsistencies, and clarify the relative importance of WWEs and EWSs. It is found that the springtime surplus of WWEs and summertime balance between WWEs and EWSs (yielding small net wind stress anomaly) accounts for the early development and midyear reversal of El Niño–like SSTA development in 2014. A strong abundance of WWEs in 2015 accounts for the rapid SSTA warming observed then. Accurately forecasting equatorial Pacific SSTA in years like 2014 and 2015 may require learning to predict WWE and EWS occurrence characteristics.

Funder

Climate Program Office

National Oceanic and Atmospheric Administration

Joint Institute for the Study of the Atmosphere and Ocean

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3