Affiliation:
1. Department of Earth, Ocean and Atmospheric Science, The Florida State University, Tallahassee, Florida
2. Department of Meteorology, Stockholm University, Stockholm, Sweden
Abstract
Abstract
Understanding non-Gaussian statistics of atmospheric synoptic and low-frequency variability has important consequences in the atmospheric sciences, not least because weather and climate risk assessment depends on knowing and understanding the exact shape of the system’s probability density function. While there is no doubt that many atmospheric variables exhibit non-Gaussian statistics on many time (and spatial) scales, a full and complete understanding of this phenomenon remains a challenge. Various mechanisms behind the observed atmospheric non-Gaussian statistics have been proposed but remain, however, multifaceted and scattered in the literature: nonlinear dynamics, multiplicative noise, cross-frequency coupling, nonlinear boundary layer drag, and others. Given the importance of this subject for weather and climate research, and in an attempt to contribute to this topic, a thorough review and discussion of the different mechanisms that lead to non-Gaussian weather and climate variability are presented in this paper and an outlook is given.
Publisher
American Meteorological Society
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献