Role of Advection of Parameterized Turbulence Kinetic Energy in Idealized Tropical Cyclone Simulations

Author:

Chen Xiaomin1,Bryan George H.2

Affiliation:

1. 1 NOAA/AOML Hurricane Research Division, Miami, FL

2. 2 National Center for Atmospheric Research, Boulder, CO

Abstract

AbstractHorizontal homogeneity is typically assumed in the design of planetary boundary layer (PBL) parameterizations in weather prediction models. Consistent with this assumption, PBL schemes with predictive equations for subgrid turbulence kinetic energy (TKE) typically neglect advection of TKE. However, tropical cyclone (TC) boundary layers are inhomogeneous, particularly in the eyewall. To gain further insight, this study examines the effect of advection of TKE using the Mellor-Yamada-Nakanishi-Niino (MYNN) PBL scheme in idealized TC simulations. The analysis focuses on two simulations, one that includes TKE advection (CTL) and one that does not (NoADV). Results show that relatively large TKE in the eyewall above 2 km is predominantly attributable to vertical advection of TKE in CTL. Interestingly, buoyancy production of TKE is negative in this region in both simulations; thus, buoyancy effects cannot explain observed columns of TKE in TC eyewalls. Both horizontal and vertical advection of TKE tends to reduce TKE and vertical viscosity (Km) in the near-surface inflow layer, particularly in the eyewall of TCs. Results also show that the simulated TC in CTL has slightly stronger maximum winds, slightly smaller radius of maximum wind (RMW), and ~5% smaller radius of gale-force wind than in NoADV. These differences are consistent with absolute angular momentum being advected to smaller radii in CTL. Sensitivity simulations further reveal that the differences between CTL and NoADV are more attributable to vertical advection (rather than horizontal advection) of TKE. Recommendations for improvements of PBL schemes that use predictive equations for TKE are also discussed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference104 articles.

1. Potential low bias in high-wind drag coefficient inferred from dropsonde data in hurricanes;Richter;J. Atmos. Sci.,2021

2. andCoauthors description of the Advanced Research WRF version Note https org;Skamarock;Tech,2008

3. andCoauthors unified system for weather to seasonal prediction Adv Model MS https org;Harris;Earth Syst,2020

4. Estimation and mapping of hurricane turbulent energy using airborne Doppler measurements;Lorsolo;Mon. Wea. Rev.,2010

5. Turbulent fluxes in the hurricane boundary layer. Part I: Momentum flux;French;J. Atmos. Sci.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3