Sensitivity of HAFS-B Tropical Cyclone Forecasts to Planetary Boundary Layer and Microphysics Parameterizations

Author:

Hazelton Andrew12ORCID,Chen Xiaomin3,Alaka Ghassan J.2,Alvey George R.12,Gopalakrishnan Sundararaman2,Marks Frank2

Affiliation:

1. a Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida

2. b NOAA/AOML/HRD, Miami, Florida

3. c University of Alabama in Huntsville, Huntsville, Alabama

Abstract

Abstract Understanding how model physics impact tropical cyclone (TC) structure, motion, and evolution is critical for the development of TC forecast models. This study examines the impacts of microphysics and planetary boundary layer (PBL) physics on forecasts using the Hurricane Analysis and Forecast System (HAFS), which is newly operational in 2023. The “HAFS-B” version is specifically evaluated, and three sensitivity tests (for over 400 cases in 15 Atlantic TCs) are compared with retrospective HAFS-B runs. Sensitivity tests are generated by 1) changing the microphysics in HAFS-B from Thompson to GFDL, 2) turning off the TC-specific PBL modifications that have been implemented in operational HAFS-B, and 3) combining the PBL and microphysics modifications. The forecasts are compared through standard verification metrics, and also examination of composite structure. Verification results show that Thompson microphysics slightly degrades the days 3–4 forecast track in HAFS-B, but improves forecasts of long-term intensity. The TC-specific PBL changes lead to a reduction in a negative intensity bias and improvement in RI skill, but cause some degradation in prediction of 34-kt (1 kt ≈ 0.51 m s−1) wind radii. Composites illustrate slightly deeper vortices in runs with the Thompson microphysics, and stronger PBL inflow with the TC-specific PBL modifications. These combined results demonstrate the critical role of model physics in regulating TC structure and intensity, and point to the need to continue to develop improvements to HAFS physics. The study also shows that the combination of both PBL and microphysics modifications (which are both included in one of the two versions of HAFS in the first operational implementation) leads to the best overall results. Significance Statement A new hurricane model, the Hurricane Analysis and Forecast System (HAFS), is being introduced for operational prediction during the 2023 hurricane season. One of the most important parts of any forecast model are the “physics parameterizations,” or approximations of physical processes that govern things like turbulence, cloud formation, etc. In this study, we tested these approximations in one configuration of HAFS, HAFS-B. Specifically, we looked at two different versions of the microphysics (modeling the growth of water and ice in clouds) and boundary layer physics (the approximations for turbulence in the lowest level of the atmosphere). We found that both of these sets of model physics had important effects on the forecasts from HAFS. The microphysics had notable impacts on the track forecasts, and also changed the vertical depth of the model hurricanes. The boundary layer physics, including some of our changes based on observed hurricanes and turbulence-resolving models, helped the model better predict rapid intensification (periods where the wind speed increases quickly). Work is ongoing to improve the model physics for better forecasts of rapid intensification and overall storm structure, including storm size. The study also shows the combination of both PBL and microphysics modifications overall leads to the best results and thus was used as one of the two first operational implementations of HAFS.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Reference54 articles.

1. The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance;Bender, M. A.,2007

2. An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates;Bleck, R.,2002

3. Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations;Braun, S. A.,2000

4. Validation of simulated hurricane drop size distributions using polarimetric radar;Brown, B. R.,2016

5. Influence of cloud–radiative forcing on tropical cyclone structure;Bu, Y. P.,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3