Affiliation:
1. School of Earth and Environment, University of Leeds, Leeds, United Kingdom
2. Department of Meteorology, University of Reading, Reading, United Kingdom
Abstract
Abstract
Spatial patterns of local climate feedback and equilibrium partial temperature responses are produced from eight general circulation models with slab oceans forced by doubling carbon dioxide (CO2). The analysis is extended to other forcing mechanisms with the Met Office Hadley Centre slab ocean climate model version 3 (HadSM3). In agreement with previous studies, the greatest intermodel differences are in the tropical cloud feedbacks. However, the greatest intermodel spread in the equilibrium temperature response comes from the water vapor plus lapse rate feedback, not clouds, disagreeing with a previous study. Although the surface albedo feedback contributes most in the annual mean to the greater warming of high latitudes, compared to the tropics (polar amplification), its effect is significantly ameliorated by shortwave cloud feedback. In different seasons the relative importance of the contributions varies considerably, with longwave cloudy-sky feedback and horizontal heat transport plus ocean heat release playing a major role during winter and autumn when polar amplification is greatest. The greatest intermodel spread in annual mean polar amplification is due to variations in horizontal heat transport and shortwave cloud feedback. Spatial patterns of local climate feedback for HadSM3 forced with 2 × CO2, +2% solar, low-level scattering aerosol and high-level absorbing aerosol are more similar than those for different models forced with 2 × CO2. However, the equilibrium temperature response to high-level absorbing aerosol shows considerably enhanced polar amplification compared to the other forcing mechanisms, largely due to differences in horizontal heat transport and water vapor plus lapse rate feedback, with the forcing itself acting to reduce amplification. Such variations in high-latitude response between models and forcing mechanisms make it difficult to infer specific causes of recent Arctic temperature change.
Publisher
American Meteorological Society
Cited by
99 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献