Why Is Climate Sensitivity for Solar Forcing Smaller than for an Equivalent CO2 Forcing?

Author:

Kaur Harpreet1,Bala Govindasamy1,Seshadri Ashwin K.12

Affiliation:

1. a Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, India

2. b Divecha Centre for Climate Change, Indian Institute of Science, Bangalore, India

Abstract

Abstract Previous studies have shown that climate sensitivity, defined as the global mean surface temperature change per unit radiative forcing, is smaller for solar radiative forcing compared to an equivalent CO2 radiative forcing. We investigate the causes for this difference using the NCAR CAM4 model. The contributions to the climate feedback parameter, which is inversely related to climate sensitivity, are estimated for water vapor, lapse rate, Planck, albedo, and cloud feedbacks using the radiative kernel technique. The total feedback estimated for CO2 and solar radiative forcing from our model simulations is −1.23 and −1.45 W m−2 K−1, respectively. We find that the difference in feedback between the two cases is primarily due to differences in lapse rate, water vapor, and cloud feedbacks, which together explain 65% of the difference in total feedback. The rest comes from Planck and albedo feedbacks. The differences in feedbacks arise mainly from differences in the horizontal (meridional) structure of forcing and the consequent warming. Our study provides important insights into the effects of the meridional structure of forcing on climate feedback, which is important for evaluating global climate change from different forcing agents. Significance Statement An increase in atmospheric CO2 concentration or an increase in incoming solar radiation leads to a rise in the radiative budget and consequent climate warming, which is amplified by the presence of multiple climate feedbacks. These feedbacks, from changes in surface albedo, combined effect of water vapor and the vertical lapse rate of temperature, and changes in clouds, differ between solar and CO2 forcing. Using radiative kernels, this study quantifies these individual feedbacks for an equivalent radiative change caused by an increase in CO2 or incoming solar radiation, showing how the differences arise from differences in the meridional patterns of warming. In agreement with prior studies, these differences can explain the smaller efficacy of solar forcing compared to CO2 forcing.

Funder

Ministry of Education, India

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference116 articles.

1. CO2 forcing induces semi-direct effects with consequences for climate feedback interpretations;Andrews, T.,2008

2. The dependence of global cloud and lapse rate feedbacks on the spatial structure of tropical Pacific warming;Andrews, T.,2018

3. A surface energy perspective on climate change;Andrews, T.,2009

4. The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models;Andrews, T.,2015

5. Effective radiative forcing in a GCM with fixed surface temperatures;Andrews, T.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3