A Dynamical Performance-Ranking Method for Predicting Individual Ensemble Member Performance and Its Application to Ensemble Averaging

Author:

Du Jun1,Zhou Binbin2

Affiliation:

1. NOAA/NCEP/Environmental Modeling Center, Camp Springs, Maryland

2. NOAA/NCEP/Environmental Modeling Center, Camp Springs, Maryland, and I.M. Systems Group, Inc., Camp Springs, Maryland

Abstract

Abstract This study proposes a dynamical performance-ranking method (called the Du–Zhou ranking method) to predict the relative performance of individual ensemble members by assuming the ensemble mean is a good estimation of the truth. The results show that the method 1) generally works well, especially for shorter ranges such as a 1-day forecast; 2) has less error in predicting the extreme (best and worst) performers than the intermediate performers; 3) works better when the variation in performance among ensemble members is large; 4) works better when the model bias is small; 5) works better in a multimodel than in a single-model ensemble environment; and 6) works best when using the magnitude difference between a member and its ensemble mean as the “distance” measure in ranking members. The ensemble mean and median generally perform similarly to each other. This method was applied to a weighted ensemble average to see if it can improve the ensemble mean forecast over a commonly used, simple equally weighted ensemble averaging method. The results indicate that the weighted ensemble mean forecast has a smaller systematic error. This superiority of the weighted over the simple mean is especially true for smaller-sized ensembles, such as 5 and 11 members, but it decreases with the increase in ensemble size and almost vanishes when the ensemble size increases to 21 members. There is, however, little impact on the random error and the spatial patterns of ensemble mean forecasts. These results imply that it might be difficult to improve the ensemble mean by just weighting members when an ensemble reaches a certain size. However, it is found that the weighted averaging can reduce the total forecast error more when a raw ensemble-mean forecast itself is less accurate. It is also expected that the effectiveness of weighted averaging should be improved when the ensemble spread is improved or when the ranking method itself is improved, although such an improvement should not be expected to be too big (probably less than 10%, on average).

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference38 articles.

1. The trade-off in bias correction between using the latest analysis/modeling system with a short, versus an older system with a long archive;Cui,2006

2. Changes to Short-Range Ensemble Forecast system: 12 December 2007;DiMego,2010

3. Uncertainty and ensemble forecasting;Du,2007

4. Implementation of a real-time short-range ensemble forecasting system at NCEP: An update;Du,2001

5. NCEP Short-Range Ensemble Forecast (SREF) system upgrade in 2009;Du,2009

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3