Drop Axis Ratios from a 2D Video Disdrometer

Author:

Thurai Merhala1,Bringi V. N.1

Affiliation:

1. Colorado State University, Fort Collins, Colorado

Abstract

Abstract Results from an experiment to measure the drop shapes using a 2D video disdrometer (2DVD) are reported. Under calm conditions, drops were generated from a hose located on a bridge 80 m above ground, this height being sufficient to allow drop oscillations to reach a steady state. The disdrometer data had to be carefully processed so as to eliminate the drops mismatched by the instrument and to remove the system spreading function. The total number of drops analyzed was around 115 000. Their axis ratio distributions were obtained for diameters ranging from 1.5 to 9 mm. The mean axis ratio decreases with increasing drop diameter, in agreement with the upper bound of the Beard and Chuang equilibrium shape model. The inferred mode of oscillation appears to be dominated by the oblate–prolate axisymmetric mode for the diameter range of 1.5 to 9 mm. The mean axis ratio agrees well with two empirically fitted formulas reported in earlier studies. In addition, a linear fit was applied to the data for radar applications relating to rain retrievals from dual-polarization measurements. The 2DVD data taken in moderate stratiform rain were also analyzed in a similar way and the results agree with the artificially generated drop experiment, at least up to 4 mm. No data for larger diameters were available for stratiform precipitation. Finally, the fall velocity was examined in terms of drop diameter. The results closely follow an empirical formula fitted to the Gunn and Kinzer data as well as the Beard and Pruppacher data including a slight decrease in the terminal velocity with a diameter beyond 7 mm.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference30 articles.

1. Satellite-to-Ground Radiowave Propagation.;Allnutt,1989

2. Laboratory measurements of axis ratios for large raindrops.;Andsager;J. Atmos. Sci.,1999

3. Doppler radar characteristics of precipitation at vertical incidence.;Atlas;Rev. Geophys. Space Phys.,1973

4. Terminal velocity and shape of cloud and precipitation drops aloft.;Beard;J. Atmos. Sci.,1976

5. Simple altitude adjustments for raindrop velocities for Doppler radar analysis.;Beard;J. Atmos. Oceanic Technol.,1985

Cited by 143 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3