Affiliation:
1. College of Meteorology and Oceanography National University of Defense Technology Changsha China
2. State Key Laboratory of Severe Weather Chinese Academy of Meteorological Sciences Beijing China
Abstract
AbstractThe physical behavior of a falling raindrop is governed by delicate fluid dynamics and thermodynamics, and oscillates with time. Despite this time‐variant nature, past observational and simulation studies have aimed to generalize parameterizations for describing rain microphysics bearing the assumption that raindrops fall at terminal speeds with an equilibrium shape. However, the applicability of this hypothesis in a realistic atmosphere that is inherently turbulent remains an open question. Here, we employ novel retrieval techniques to quantify the impact of turbulence on raindrop microphysics using long‐term in situ observations with careful assessment of the wind effect. We find that raindrop microphysics increasingly deviate from the equilibrium state as the turbulence dissipation rate increases, and this effect is more pronounced for large raindrops. We present turbulence‐invoked rain microphysical parameterizations which shed light on the complex interactions between turbulence dynamics and raindrop microphysics.
Funder
National Natural Science Foundation of China
Publisher
American Geophysical Union (AGU)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献