Calibration of Dual-Polarization Radar in the Presence of Partial Beam Blockage

Author:

Giangrande Scott E.1,Ryzhkov Alexander V.1

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract In the presence of partial beam blockage (PBB), weather radar measurements can experience significant bias that directly compromises the accuracy of the hydrologic applications. Techniques for the calibration of the radar reflectivity factor Z and differential reflectivity ZDR, measured with dual-polarization weather radars in the presence of partial beam obstruction, are examined in this paper. The proposed ZDR calibration technique utilizes radar measurements of ZDR in light rain and dry aggregated snow at unblocked and blocked elevations. This calibration technique was tested for the National Severe Storms Laboratory’s (NSSL’s) Cimarron radar that suffers from PBB, and a polarimetric prototype of the Weather Surveillance Radar-1988 Doppler (WSR-88D) that does not experience PBB. Results indicate that the ZDR bias that is associated with PBB can be calibrated with an accuracy of 0.2–0.3 dB, provided that the dataset is sufficiently large. Calibration of Z in the presence of PBB is based on the idea of self-consistency among Z, ZDR, and the specific differential phase KDP in rain. The self-consistency calibration of Z from the Cimarron radar is performed following an area–time integral method. Integration is partitioned into small azimuthal sectors to assess the azimuthal modulation of the Z bias. The suggested technique is validated by direct comparisons of reflectivity factors that are measured by the Cimarron radar and the unobstructed operational WSR-88D radar. It is shown that the azimuthal modulation of Z that is caused by PBB is well captured, and the accuracy of the Z calibration is within 2–3 dB.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3